A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model
نویسندگان
چکیده
This paper is concerned with the estimation of the autoregressive parameter in a widely considered spatial autocorrelation model. The typical estimator for this parameter considered in the literature is the (quasi) maximum likelihood estimator corresponding to a normal density. However, as discussed in the paper, the (quasi) maximum likelihood estimator may not be computationally feasible in many cases involving moderate or large sized samples. In this paper we suggest a generalized moments estimator that is computationally simple irrespective of the sample size. We provide results concerning the large and small sample properties of this estimator.
منابع مشابه
A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model*
This paper is concerned with the estimation of the autoregressive parameter in a widely considered spatial autocorrelation model. The typical estimator for this parameter considered in the literature is the (quasi) maximum likelihood estimator corresponding to a normal density. However, as discussed in this paper, the (quasi) maximum likelihood estimator may not be computationally feasible in m...
متن کاملPanel data models with spatially correlated error components
In this paper we consider a panel data model with error components that are both spatially and time-wise correlated. The model blends specifications typically considered in the spatial literature with those considered in the error components literature. We introduce generalizations of the generalized moments estimators suggested in Kelejian and Prucha (1999. A generalized moments estimator for ...
متن کاملOn Two-step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors
In this paper, we consider a spatial-autoregressive model with autoregressive disturbances, where we allow for endogenous regressors in addition to a spatial lag of the dependent variable. We suggest a two-step generalized method of moments (GMM) and instrumental variable (IV) estimation approach extending earlier work by, e.g., Kelejian and Prucha (1998, 1999). In contrast to those papers, we ...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کامل